Long-Time Asymptotics for the Integrable Nonlocal Focusing Nonlinear Schrödinger Equation for a Family of Step-Like Initial Data
نویسندگان
چکیده
We study the Cauchy problem for integrable nonlocal focusing nonlinear Schr\"odinger (NNLS) equation $ iq_{t}(x,t)+q_{xx}(x,t)+2 q^{2}(x,t)\bar{q}(-x,t)=0 with step-like initial data close to ``shifted step function'' $\chi_R(x)=AH(x-R)$, where $H(x)$ is Heaviside function, and $A>0$ $R>0$ are arbitrary constants. Our main aim large-$t$ behavior of solution this problem. show that $R\in\left(\frac{(2n-1)\pi}{2A},\frac{(2n+1)\pi}{2A}\right)$, $n=1,2,\dots$, $(x,t)$ plane splits into $4n+2$ sectors exhibiting different asymptotic behavior. Namely, there $2n+1$ decays $0$, whereas in other (alternating decay), approaches (different) constants along each ray $x/t=const$. technical tool representation terms an associated matrix Riemann-Hilbert its subsequent analysis following ideas steepest descent method.
منابع مشابه
Integrable nonlocal nonlinear Schrödinger equation.
A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contras...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Chaoticons described by nonlocal nonlinear Schrödinger equation
It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-lik...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2021
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-021-03941-2